
Gravitational Path Integrals

David Grabovsky

February 20, 2023

Abstract

This set of lecture notes is based on the first half of a quarter-long lecture course

(PHYS 231C) given by Prof. Don Marolf at UCSB in the spring of 2021. It is intended

as a pedagogical introduction to path integrals in QM and gravity; some aspects of

classical GR; Euclidean techniques in quantum gravity; and the replica trick.
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0 INTRODUCTION

0 Introduction

Introduction to be written last.

Pre-requisites: classical mechanics (Lagrangian and Hamiltonian mechanics, and some

ideas from Hamilton-Jacobi theory), quantum mechanics (path integrals to be reviewed),

quantum statistical mechanics (in terms of density matrices), some QFT, and definitely GR

(though many topics will be reviewed).

Conventions: natural units, but we keep G and sometimes use ~ as a heuristic. The

natural numbers start at zero, and the natural logarithm is ln. Fourier transforms are unitary,

i.e. they have factors of 1√
2π

. The spacetime dimension is d, so the spatial dimension is d−1.

Bulk spacetime indices are early Latin, abcd, and boundary spacetime indices are middle

Latin, ijk`. We occasionally use Greek indices αβγδ and µνρσ for some calculations.
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1 PATH INTEGRALS

1 Path Integrals

1.1 The Canonical Path Integral

Our story begins with single-particle quantum mechanics in one dimension. The Hilbert

space is H = L2(R), and the system is governed by a self-adjoint Hamiltonian operator Ĥ.

We work in the Heisenberg picture, where observables Ô evolve in time according to

d

dt
Ô(t) = i[Ĥ, Ô]. (1.1)

Now consider a one-parameter family of self-adjoint operators q̂(t) and p̂(t), the position and

momentum, which have canonical equal-time commutator [q̂(t), p̂(t)] = i. The Hamiltonian

is allowed to depend on both q̂ and p̂, as well as explicitly on time: Ĥ = Ĥ(q̂(t), p̂(t), t).

Note that for t < t′, the commutator [q̂(t), p̂(t′)] can only be obtained from the canonical

one after solving the equation of motion: in other words, the commutator depends on Ĥ.

The path integral. The operator q̂(t) has a complete set of eigenstates {|q, t〉}. These

states are assumed to be orthonormal, in the sense that 〈q′, t|q, t〉 = δ(q− q′) at equal times.

This does not tell us what the overlap K(qi, ti; qf , tf ) ≡ 〈qf , tf |qi, ti〉 is for ti < tf , but surely

this quantity, the propagator, depends on how Ĥ evolves the system between times ti and

tf . To construct the path integral that computes the propagator, we will proceed in four

steps: (1) formally solve (1.1) in the case Ô(t) = q̂(t), and thereby relate the q̂-eigenstates

at times ti and tf ; (2) slice up the interval [ti, tf ] into a large number N of infinitesimal time

steps, and resolve the identity at each step; (3) resolve a tricky ordering ambiguity in the

Hamiltonian; and (4) take the continuum limit to obtain the path integral.

Step 1. The formal solution to the “equation of motion” (1.1) is given by conjugating

Ô(ti) by the unitary time evolution operator U(ti, tf ). This operator is constructed from the

Hamiltonian by means of the Dyson series, which generalizes the familiar operator e−iĤt to

the case of an arbitrary time-dependent Hamiltonian. For Ô = q̂, we have

dq̂

dt
= i[Ĥ(t), q̂(t)] =⇒ q̂(tf ) = U(ti, tf ) q̂(ti)U(ti, tf )

−1 = U(ti, tf ) q̂(ti)U(tf , ti) =

= P exp

[
i

∫ tf

ti

dt Ĥ(t)

]
q̂(ti)P exp

[
i

∫ ti

tf

dt Ĥ(t)

]
. (1.2)

Here P is the path ordering symbol. Notice that inverting U is tantamount to reversing the

path, so as to evolve backwards in time. This solution allows us to show that the eigenstates

|q, ti〉 are related to |q, tf〉 by time evolution. The phase of the state simply rotates:

|q, tf〉 = U(ti, tf ) |q, ti〉 = P exp

[
i

∫ tf

ti

dt Ĥ(t)

]
|q, ti〉 . (1.3)
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1.1 The Canonical Path Integral 1 PATH INTEGRALS

This is straightforward to check by applying q̂(tf ) to the proposed form of |q, tf〉:

q̂(tf ) |q, tf〉 = U(ti, tf ) q̂(ti)((((
(((

(((
U(ti, tf )

−1U(ti, tf ) |q, ti〉 = q U(ti, tf ) |q, ti〉 = q |q, tf〉 . X (1.4)

Step 2. We embark on the journey of computing the propagator:

K(qi, ti; qf , tf ) ≡ 〈qf , tf |qi, ti〉 = 〈qf , ti| P exp

[
i

∫ ti

tf

dt Ĥ(t)

]
|qi, ti〉 . (1.5)

Here the path has been reversed because we are time-evolving the dual vector 〈qf , tf |. The

path-ordered exponential is defined as the following product:

K(qi, ti; qf , tf ) = 〈qf , ti|U(tf , ti)|qf , ti〉 = lim
∆t→0

〈qf , ti|e−iĤ(ti)∆t · · · e−iĤ(tf )∆t|qi, ti〉 . (1.6)

The operator U(tf , ti) appearing here is a string of infinitesimal time evolution operators

proceeding from tf to ti in steps of size ∆t. Thus the rightmost Ĥ is evaluated at tf , the

one before is evaluated at tf − ∆t, and so on until the leftmost Ĥ is evaluated at ti. The

minus signs above are responsible for undoing the backwards evolution of each step.

Next, we denote qN ≡ qf and q0 ≡ qi, and insert N − 1 position-space resolutions of the

identity between each exponential factor, where N =
|tf−ti|

∆t
is the number of time steps:

K(qi, ti; qf , tf ) = lim
N→∞

∫
dq1 · · · dqN−1 〈qN , t| e−iĤ(t)∆t |qN−1, t〉 〈qN−1, t| · · ·

· · · |q1, t〉 〈q1, t| e−iĤ(t′)∆t |q0, t〉 . (1.7)

If we study just one of the factors above, we might try to work to first order in ∆t:

K1 ≡ 〈q1, t| e−iĤ(tf )∆t |q0, t〉 = 〈q1, t|
(

1− iĤ(tf )∆t+O(∆t2)
)
|q0, t〉 . (1.8)

But position-space matrix elements of Ĥ are difficult to calculate in general: it is much

easier to find matrix elements of Ĥ sandwiched between position and momentum states.

This motivates the insertion of yet another identity, this time in momentum space:

K1 =

∫
dp1 〈q1, t|p1, t〉 〈p1, t|

(
1− iĤ(tf )∆t+O(∆t2)

)
|q0, t〉 . (1.9)

At this point, we will assume that Ĥ does not explicitly depend on time: Ĥ(t) = Ĥ(tf ) = Ĥ.

(In fact, this restriction can be loosened with some more work.)

Step 3. The problem with defining Ĥ = H(q̂(t), p̂(t)) as a “function” of the q̂ and p̂

operators is that there are ordering ambiguities due to noncommutativity. For instance,

q̂p̂ = p̂q̂ + i 6= p̂q̂. We will choose to define Ĥ so that all p̂’s are moved to the left and all
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1.1 The Canonical Path Integral 1 PATH INTEGRALS

q̂’s are moved to the right. This convention is called Weyl ordering, and we define the Weyl

symbol HW (q, p) to be the following possibly complex-valued c-number function:

HW (q, p) =
〈p, t|Ĥ|q, t〉
〈p, t|q, t〉

. (1.10)

We will actually take HW to mean the real part of of the above, since the imaginary part is

of order ~ and vanishes in the semiclassical limit. So in fact HW (q, p) is real.

The numerator of HW is exactly what appears in the matrix element above:

K1 =

∫
dp1 〈q1, t|p1, t〉 〈p1, t|q0, t〉

(
1− iHW (q1, p1)∆t+O(∆t2)

)
. (1.11)

Now, we can evaluate the integrand. The inner product wave functions 〈q1, t|p1, t〉 and

〈p1, t|q0, t〉 are plane waves, and (to first order) the 1− iHW∆t term is also an exponential:

K1 =
1

2π

∫
dp1 e

ip1q1e−ip1q0e−iHW (q1,p1)∆t =
1

2π

∫
dp1 exp

(
i
[
p(q1 − q0)−HW (q1, p1)∆t

])
=

=
1

2π

∫
dp1 exp

(
i
[
p1q̇1 −HW (q1, p1)

]
∆t
)
. (1.12)

The factor of 1
2π

comes from the 1√
2π

normalization on each of the two plane waves. We have

multiplied and divided by ∆t and introduced q̇1 ≡ q1−q0
∆t

. We recognize the term in brackets

as the contribution to the (canonical) action on a small time interval [t0, t1] of length ∆t.

Step 4. We can now go back to the full propagator (1.7) and take the continuum limit

∆t −→ 0 (or N −→∞). the result is a product of expressions like the one above:

K(qi, ti; qf , tf ) = lim
N→∞

∫
dq1 · · · qN−1K1 · · ·KN = (1.13)

= lim
N→∞

(
1

2π

)N ∫
dq1 · · · dqN−1 dp1 · · · dpN exp

(
i
N∑
k=1

[
pkq̇k −HW (qk, pk)

]
∆t

)
≡

≡
q(tf )=qf∫
q(ti)=qi

DqDp exp

(
i

∫ tf

ti

dt
[
pq̇ −HW (q, p)

])
=

q(tf )=qf∫
q(ti)=qi

DqDp eiSL[q,p].

The infinite-dimensional measure DqDp on the set of phase-space trajectories is a formal

expression, and is not rigorously defined. It instructs us to sum over “all” paths taken by a

particle between positions qi and qf during the time interval [ti, tf ]. The contribution of a

given path to the propagator is weighted by the Lorentzian action

SL[q, p] =

∫ tf

ti

dt
(
pq̇ −HW (q, p)

)
. (1.14)
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1.2 Comments and Extensions 1 PATH INTEGRALS

1.2 Comments and Extensions

The measure. In many cases, SL is quadratic in the momenta. In this case the path

integral over p is Gaussian and can be performed exactly. This is not always true: more

generally, if one actually manages to perform the path integral over momenta exactly, one

will be left with a “measure factor” µ[q]. To be precise, we write

K(qi, ti; qf , tf ) =

q(tf )=qf∫
q(ti)=qi

Dq µ[q] eiSL[q,q̇], q̇ =
∂HW

∂p
. (1.15)

One often says that “accounting for the measure factor restores unitarity.” However, the

measure can safely be ignored (i.e. treated as µ = 1) in the semiclassical limit because its

nontrivial dependence on q is always of order ~. So we will sometimes ignore it.

Boundary conditions. Observe that the action SL produced by our derivation has the

correct form to yield a well-posed variational problem in which the initial and final positions

are fixed. Fixing qi and qf also means that the measure Dp includes one more p integral

than Dq has q integrals. (In this sense, the momenta live “between” positions.) We could

instead have derived a path integral expression for 〈pf , tf |pi, ti〉. Such a path integral would

have one more integral over q than over p, and its action would be modified by a boundary

term. This boundary term is responsible for well-posing a variational problem in which the

initial momenta are fixed. We can also interpret the boundary term as part of a generating

function that enacts a canonical transformation that rotates the q’s into the p’s.

General states. The discussion above admits a nice generalization. The boundary terms

above discussed can be regarded as coming from the wave functions of arbitrary states |ψ〉
and |ψ′〉. The path integral expression for their overlap is written

〈ψ′|ψ〉 =

∫
dqi dqf 〈ψ′|qf , tf〉 〈qf , tf |qi, ti〉 〈qi, ti|ψ〉 =

∫
dqi dqf ψ

′(qf , tf )
∗ψ(qi, ti) 〈qf , ti|qi, ti〉 =

=

∫
DqDpψ′(qf )∗ψ(qi) e

iSL =

∫
DqDp exp

[
i
(
SL − lnψ′(qf )

∗ − lnψ(qi)
)]
. (1.16)

Here we absorbed the two position integrals dq and dq′ into the path integral measure Dq.
This unfortunate ambiguity in the notation is often left for readers to resolve. In the last

expression, the lnψ terms are not integrated dt, but are rather evaluated at the endpoints.

They are boundary terms in SL and, as above, they generate canonical transformations.

More poetically, if |ψ〉 is somewhere “between” |q〉 and |p〉, then the lnψ terms in SL provide

a suitable “rotation” of the variational problem to a basis that includes |ψ〉.
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1.2 Comments and Extensions 1 PATH INTEGRALS

Correlators. Propagators are not the only quantities that path integrals can compute.

They can also handle matrix elements of operators, or correlators. Fix instants in time

ti < t1 < t2 < · · · < tn < tf and consider operators O1(t1), ...,On(tn). Then by time-slicing

and inserting complete sets of states between each operator, we arrive at

〈qf , tf |On(tn) · · · O1(t1)|qi, ti〉 =

q(tf )=qf∫
q(ti)=qi

DqDpOW,n(tn) · · · OW,1(t1) eiSL , (1.17)

where OW,j is the Weyl symbol of Oj. We describe this situation by saying that we path-

integrate from ti to tf and insert theOj at times tj. Note that the ordering prescription above

only gives the correct expression for the correlator if the Oj insertions are time-ordered.

Ordering and timefolds. More generally, we might wish to compute out-of-time-ordered

correlators (OTOCs), where the restriction t1 < · · · < tn is lifted, by modifying our time-

slicing. Suppose, for example, that we want to compute 〈qf , tf |O3(t3)O2(t2)O1(t1)|qi, ti〉,
where ti < t3 < t2 < t1 < tf . To do so, we should start at ti, evolve all the way up to t1,

insert O1(t1), then evolve backwards to t2, insert O2(t2), evolve backwards again to t3, insert

O3(t3), and finally evolve forward to finish at tf . We illustrate this situation in Fig. 1.

 

Figure 1: The path integral picture of an OTOC.

Writing down an explicit formula to describe this calculation would be extremely tedious;

in practice, (1.17) is written down along with the picture above. The picture is equivalent

to the following instructions: “construct a path integral of the form (1.14) on the interval

[ti, t1], evolving from one time step to the next using e−iĤ∆t; then insert O1(t1); then compute

another path integral on [t2, t1], evolving from one time step to the next using e+iĤ∆t; then

insert O2(t2); etc.” This procedure is often called timefolding—the terminology is a nod to

orbifolds. The main idea is just that path integrals compute path-ordered, rather than time-

ordered, correlators, and we are free to specify the path by evolving forwards or backwards

using e±iĤ∆t, in order to hit all of the operator insertions in the right sequence.

Loops and traces. The object 〈qf , t|O(t1)|qi, t〉 is called an in-in or closed time path

integral, because the initial and final times are equal, while (say) t1 > t. It is computed by

the path integral depicted in Fig. 2 (left). If we also set qi = qf = q0 and integrate over all

7



1.3 Euclidean Path Integrals 1 PATH INTEGRALS

q0 as shown in Fig. 2 (right), the resulting path integral computes the trace of O(t1):∫
dq0 〈q0, t|O(t1)|q0, t〉 = Tr[O(t1)] =

∮
DqDpOW (t1) eiSL , (1.18)

where the loop around the integral indicates periodic boundary conditions q(ti) = q0 = q(tf ).

Notice that the trace depends only on t1, and is independent of the time t at which we started!

More generally, it is a general property of path integrals that as long as we do not hit any

operator insertions, the path integral is invariant under arbitrary deformations of the time-

slicing contour. This is “obvious” if you don’t think too hard: going forward evolves by

e−iĤ∆t, going backward evolves by e+iĤ∆t, and the two cancel each other out.

 

Figure 2: The closed time path integral (left) and the path integral for a trace (right).

Preparing states. Occasionally, we wish to calculate overlaps 〈ψ′|ψ〉 and correlators

〈ψ′|O|ψ〉 in states that are prepared from some known vacuum or reference state |0〉. That

is, there are (possibly complicated) “guiding” Hamiltonians Hg and H ′g for which

|ψ〉 = P exp

[
i

∫ ti

−∞
dtHg(t)

]
|0〉 , |ψ′〉 = P exp

[
i

∫ tf

+∞
dtH ′g(t)

]
|0〉 . (1.19)

Then to calculate 〈ψ′|ψ〉 = 〈0|U(tf ,∞)U(−∞, ti)|0〉, we write down a path integral for 〈0|0〉
on the entire real axis t ∈ (−∞,∞), being careful to evolve using Hg on (−∞, ti] and using

H ′g on [tf ,∞). This situation is depicted in Fig. 3. In words, we often say that the path

integral “prepares” |ψ〉 and |ψ′〉, or that these states are assembled from sources.

 

Figure 3: Preparing and evolving states using a path integral.

1.3 Euclidean Path Integrals

Euclidean time. Suppose that we want to study the object 〈qf , t0|e−βH |qi, t0〉, where β

is a positive real number and we assume for simplicity that H is time-independent. We can

regard this as a special case of the in-in PI 〈qf , t0|O|qi, t0〉 for O = e−βH . Alternatively,

if we make the somewhat ad-hoc identification β = i∆t, the object above looks like an

ordinary PI evolving in an imaginary time direction. Students of statistical mechanics will
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1.3 Euclidean Path Integrals 1 PATH INTEGRALS

recognize e−βH as proportional to the thermal density matrix, which leads to the mantra

that “statistical mechanics is quantum mechanics in imaginary time.”

In any case, let us use ∆t = −iβ to write down a PI for this matrix element:

〈qf , t0|e−βH |qi, t0〉 =

q(t0)=qf∫
q(t0)=qi

DqDp exp

(
i

∫ t0−iβ

t0

dt
[
pq̇ −HW (q, p)

])
. (1.20)

Next, we define the imaginary time τ = i(t− t0), so that the change in τ is ∆τ = i∆t = β.

(The transformation t −→ it is called a Wick rotation.) This allows us to rewrite the action

by manipulating some factors of i. We have dτ = i dt, so q̇ = dq
dt

= i dq
dτ

. We then pull out

another minus sign to define the Euclidean action SE:

iSL = i

∫ t0−iβ

t0

dt

(
p

dq

dt
−HW

)
= −

∫ β

0

dτ

(
−ipdq

dτ
+HW

)
≡ −SE. (1.21)

Henceforth using q̇ to refer to dq
dτ

for shorthand, we see that the PI becomes

〈qf , t0|e−βĤ |qi, t0〉 =

q(0)=qf∫
q(0)=qi

DqDp exp

(
−
∫ β

0

dτ
[
− ipq̇ +HW

])
=

q(0)=qf∫
q(0)=qi

DqDp e−SE . (1.22)

A simple example. Consider the Hamiltonian for a single particle moving in one dimen-

sion under the influence of a potential V (q). The Hamiltonian is given by

Ĥ =
p̂2

2m
+ V (q̂) =⇒ HW =

p2

2m
+ V (q), (1.23)

so our Euclidean PI takes the form

〈qf , t0|e−βĤ |qi, t0〉 =

∫ q(0)=qf

q(0)=qi

DqDp exp

(
−
∫ β

0

dτ

[
−ipq̇ +

p2

2m
+ V (q)

])
. (1.24)

The Dp integral in (1.24) can be evaluated exactly because SE is quadratic in p. The

p integral evaluates to a q-independent number, so the result is a covariant (Lagrangian),

rather than a canonical (Hamiltonian), PI over positions, of the form (1.15) with µ[q] = µ

a (formally infinite) constant. The covariant action SE[q, q̇] is obtained from the canonical

one appearing in (1.24) by setting p to its equation of motion. This equation of motion is

δSE

δp
= 0 = −iq̇ +

∂HW

∂p
= −iq̇ +

p

m
=⇒ p = imq̇. (1.25)

The Hamiltonian HW = −mq̇2

2
+ V (q) looks like it has the wrong sign on its kinetic term, a
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1.3 Euclidean Path Integrals 1 PATH INTEGRALS

distinctive characteristic of Euclidean time. The covariant Euclidean action is

SE[q, q̇] =

∫ β

0

dτ

(
mq̇2 − mq̇2

2
+ V (q)

)
=

∫ β

0

dτ

(
mq̇2

2
+ V (q)

)
. (1.26)

The integrand above looks distinctively energy-like. This leads to the continuation of our

vague and grandiose mantra: “dynamics in real time is equivalent to statics in imaginary

time.” The important point here is that since the “energy functional” SE[q, q̇] is positive-

definite, the quantity e−SE defines a convergent path integral.

Thermal correlators. Let us now take qi = qf = q0 in the discussion above. As in (1.18),

an extra integral over q0 yields a path integral expression for the trace of e−βĤ , an object

known as the partition function in statistical mechanics:

Z(β) = Tr
[
e−βĤ

]
=

∮
DqDp e−SE[q,p]. (1.27)

Earlier, we drew path integrals by indicating horizontal real-time evolution arrows; now, as

shown in Fig. 4, vertical arrows denote evolution in imaginary time. One way to interpret

the partition function is that the endpoints of the interval [0, β] are identified, turning it

into the thermal circle S1
τ (β) of circumference β. Its compactness is one of the many reasons

Euclidean path integrals are often easier to work with than their Lorentzian counterparts.

Figure 4: Thermal correlators. From left to right: the (qi, qf ) matrix element of O; the
thermal expectation value of O; the partition function; a generic three-point function.

Notice that if we take β −→∞, the integrand rapidly decays to zero. The slowest decay

is provided by the smallest value taken on by SE; this corresponds to the smallest eigenvalue

of H. Thus the limit β −→ ∞ corresponds to a projection of the thermal density matrix

e−βH onto the ground state of the system, and the low-temperature properties of the system

correspond to its ground-state dynamics. This happens irrespective of initial conditions,

which is why we say that in equilibrium, any system settles into its ground state, and that

the early-time fluctuations caused by the system’s initial conditions are washed out.
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1.4 Gravitational Path Integrals 1 PATH INTEGRALS

Schwinger-Keldysh. The Euclidean PI and its attendant pictures strongly suggest that

we should think of t as taking on complex values. This move allows us to draw arbitrary

evolution contours in C. So long as H is independent of time, it does not matter which

contour we use to do PIs, so long as it passes through the right operator insertions in the

right order. This partial analog of Cauchy’s theorem from complex analysis proves extremely

useful, and allows for the calculation of thermal correlation functions of the form

〈O(t1) · · · O(tn)〉β ≡ Tr
[
e−βHO(t1) · · · O(tn)

]
, t1, ..., tn ∈ C (1.28)

by drawing a timefolded contour through C that passes through t1, ..., tn in that order. These

path integrals are called Schwinger-Keldysh PIs. But one must be careful: evolution with

e−βH “always” makes sense because SE is usually positive-definite, but by the same token

evolution with e+βH “never” makes sense. One usually deals with this issue by ignoring it,

or rather by trying hard never to decrease the imaginary part of t in constructing PIs.

1.4 Gravitational Path Integrals

Apologia. Having studied path integrals in some generality, we seek to apply them to

quantum gravity. To put things optimistically, no one knows how to do this. Of course,

being physicists, we will do so anyway. We will assume, for the most part, that our intuition

from quantum mechanics carries over directly to quantum gravity, and that the resulting

formal expressions are well-enough defined for us to do calculations with them. In this

section, we will pause to take stock of the necessary generalizations and to “bemoan” some

of the technical issues we will promptly leave behind afterwards.

The quantum gravity PI. We have considered the PI for a single particle moving in

one dimension. But our formalism works equally well for any number of quantum particles

moving on an arbitrary manifold. After this, the next step is to generalize to quantum

field theory (QFT). This is usually done by considering a many-body system, often on a

lattice, and taking the continuum limit of zero lattice spacing and infinitely many particles.

Alternatively, one demotes position q from the status of an operator to the status of a label,

and then defines fields as operator-valued functions of all of the spacetime parameters. In

this sense, quantum mechanics is a field theory whose “fields,” the operators q̂(t), live on

a (0 + 1)–dimensional spacetime. After passing to field theory, one must grapple with the

issue of gauge symmetry. All the while, one must ensure that the theory has a sensible

Hamiltonian formulation; already at the level of gauge theories, this is complicated.

One is then finally ready for quantum gravity. The quantum field under scrutiny here

is the spacetime metric gµν , and one integrates eiS over “all metrics” or “all universes” to

compute a gravitational PI. Whereas ordinary QFT was an account of fields fluctuating on

a fixed spacetime background, in quantum gravity it is spacetime itself that is dynamical.

11
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The structure of gravity. The idea of integrating eiS over all metrics begs two questions:

(1) what, exactly, is S? and (2) if the metric g is the “position” variable here, then what is

the momentum? We will discuss (1) in detail soon; the terse answer is that S is the Einstein–

Hilbert action of general relativity with the Gibbons–Hawking–York boundary term. We will

not discuss (2) in great detail. There are several approaches to a Hamiltonian formulation

of GR, among them the ADM and first-order (Cartan) formalisms. Each framework comes

with its own subtleties and difficulties, many of them related to gauge invariance.

Gauge issues I. Classical general relativity (GR) is a gauge theory. This means that

our description of the theory has redundancies: there are configurations of the system that

look like distinct states “on paper,” but which are physically identical. We denote by A
the (possibly redundant) set of configurations of the system, and by G the group of gauge

transformations of the theory. Consider a particular state φ ∈ A: applying a transformation

g ∈ G will produce a gauge-equivalent state gφ ∈ A, and the set of all configurations gauge-

equivalent to φ is called its gauge orbit. Each gauge orbit is typically isomorphic to G itself,

because each state gφ is usually distinct (in A) from any other g′φ. Moreover, the space

A is foliated (i.e. ruled, in the sense of lined paper) by its gauge orbits. Each physical

degree of freedom in a gauge theory is therefore labeled uniquely by the gauge orbit it lies

on; accordingly, we write that the phase space of the theory is the quotient P = A/G.

One might imagine coordinatizing P by gauge-invariant variables qinv and pinv; one might

further imagine using the fact that the action is constant along the gauge orbits to construct

a PI by integrating the quantity eiS over P . In practice, we do this by gauge fixing : we

choose a representative configuration on each gauge orbit and label points on the resulting

“slice” by the gauge orbits it passes through, as shown in Fig. 5 below.

Figure 5: The space A of field configurations. Each gauge orbit (dotted) is isomorphic to
the gauge group G, and the gauge slices (solid) are isomorphic to the phase space P = A/G.

12
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Gauge issues II. In all but the simplest gauge theories, it is hard to find a global set of

such coordinates. It is usually easier to integrate over all of A. The fact that S is constant

along gauge orbits manifests as a prefactor of the (infinite) volume of the gauge group:∫
DqDp eiS =

∫
DqinvDpinv

∫
D[orbit(qinv, pinv)] eiS = vol(G)

∫
DqinvDpinve

iS. (1.29)

On one hand, what we really want to study is the näıve path integral over metrics and

momenta, divided by this volume; for the most part, this is what we will do. Ignoring gauge

symmetry like this sometimes has funny consequences: if two q 6= q′ lie on the same gauge

orbit, then “obviously” 〈q′, t|q, t〉 6= 0, even though the notation would suggest otherwise.

On the other hand, extremely sophisticated technology exists for handling the true gauge-

invariant path integral. All of these techniques stem from the Faddeev–Popov approach to

gauge fixing and from BRST symmetry. Among them, the BFV, BV, and antifield formalisms

are the most powerful; they are also extremely abstract. It should be noted that the infamous

Gribov ambiguity often prevents one from being able to find global coordinates on P , i.e.

from fixing a gauge slice that intersects each orbit exactly once. This problem is especially

manifest in GR, where the gauge group is the infinite-dimensional diffeomorphism group:

every coordinate transformation is a gauge transformation.1

For the most part, we will be able to evade all of these issues by working semiclassically.

This often amounts to the declaration that the gauge-invariant PI is exactly equal to eiS0 ,

where S0 is the value of the gravitational action evaluated at a stationary point, i.e. on a

classical solution. In this way, we can simply assume that gauge fixing and all its discontents

have come and gone; what remains after the dust clears is just classical GR.

Indefiniteness. The Euclidean gravitational action, which we will discuss soon, is not

positive-definite! In fact, it is unbounded above and below. We offer two terse proofs. The

first proof: the Einstein–Hilbert Lagrangian consists essentially of the scalar curvature R of

a spacetime, and by choosing arbitrarily curved spacetimes like spheres or hyperbolic spaces,

one can make R (and hence the gravitational action) arbitrarily positive or negative. The

second—and more physical—proof: recall the Friedman equation from cosmology,(
ȧ

a

)2

= − k

a2
+

8πGρ

3
. (1.30)

Suppose the matter content of the universe is a spatially homogeneous, massless scalar field

φ(t). The energy density ρ will then include (among other things) a kinetic term φ̇2. Thus

the Friedman equation reads φ̇2 − (ȧ/a)2 + · · · = 0; but this says that the scale factor a can

contribute a negative “kinetic” energy, and can make the total energy unbounded.

1Note that this statement goes beyond the usual platitude that every physical theory must be generally
covariant, i.e. independent of one’s choice of coordinates. What makes GR special in this regard is that the
spacetime geometry itself is dynamical, rather than a background structure—more on this later.
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The Gauss law. We saw in the previous section that the positive-definiteness of “sensible”

Euclidean actions helps the operator e−βĤ yield a convergent PI. So the situation here looks

bad—really bad. But energy in GR is extremely subtle: the gravitational Hamiltonian

is in fact positive-definite, but is only so on shell, i.e. when the equations of motion hold.

Actually, one only needs to satisfy the gravitational constraint equations, which impose gauge

invariance and are analogous to the Gauss law in electromagnetism.

The cosmological example above actually shows that the total energy (and thus the

Hamiltonian) of the system is always constrained to be exactly zero. In fact, this is also

what happens in electromagnetism, where Gauss’s law forces the total charge in a closed

universe to vanish. So the Euclidean action is unbounded, but the on-shell Hamiltonian

is positive-definite. This suggests that a truly gauge invariant formulation of GR should

produce a manifestly positive Euclidean action, and that somehow the process of dropping

the constraints and losing gauge invariance is responsible for the unboundedness of SE.

(Another way to say this is that we should constrain, then quantize, rather than quantize,

then constrain.) Two approaches to this problem, which is called the conformal factor

problem in the literature, are typically taken: (1) work in the semiclassical approximation,

which is already on shell and thus avoids these issues; or (2) Wick-rotate the part of the

metric responsible for the scale factor to improve the convergence of the path integral.

The Euclidean action. The (Lorentzian) Einstein–Hilbert action for a spacetime (M, g)

is the integral of its scalar curvature over the spacetime manifold:

SL[g] =
1

16πG

∫
M

ddx
√
−g R, (1.31)

One immediate problem with defining a corresponding Euclidean action is that arbitrary

pseudo-Riemannian manifolds generically lack a global time coordinate to Wick-rotate, so

it is unclear what the prescription t −→ τ = it means. We will return to this issue soon;

for the moment let us assume that it all makes sense. The Wick-rotated spacetime is then

a Riemannian manifold whose metric and scalar curvature are also denoted g and R.

The Euclidean gravitational action looks almost identical to the Lorentzian action, except

for an unexpected minus sign:

SE[g] = − 1

16πG

∫
M

ddx
√
g R. (1.32)

This sign is just a consequence of carrying out the Wick rotation carefully and consistently

imposing iSL = −SE. It can be seen most clearly in the spacetime M = S3 × R, where R
is the time axis. Here RL = RE = R(3) is the constant curvature of the 3-sphere. Upon
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integrating over a finite time interval [ti, tf ] with t = −iτ ⇐⇒ dt = −i dτ , we find

iSL =
i

16πG

∫
M

d4x
√
−g RL = i

vol(S3)

16πG
R(3)

∫ tf

ti

dt =���
�(i)(−i)vol(S3)

16πG
R(3)

∫ τf

τi

dτ =

= +
1

16πG

∫
M

d4x
√
g RE

!
= −SE =⇒ SE = − 1

16πG

∫
M

d4x
√
g R. (1.33)

Topology change. In classical GR, the best-behaved spacetimes (with respect to causal-

ity) are called globally hyperbolic. These manifolds have the topology M = Σ × R, where

R is the time axis, and the Cauchy surface Σ retains the same topology at all times. It is

this class of spacetimes for which the initial value problem in GR is well posed, for which

the Hamiltonian formalism is well defined, and on which QFT in curved spacetime is most

naturally formulated. In particular, globally hyperbolic spacetimes have a globally defined

time coordinate, and this makes it more clear what a Wick rotation means.

A big question arises: should the gravitational PI integrate over spacetimes with arbitrary

topology? In Lorentzian signature, where topology change is classically forbidden in the sense

described above, the answer seems to be “no; restrict to globally hyperbolic manifolds.”

In Euclidean signature, however, a plethora of topologies exist which have finite action

and satisfy the Einstein equations. The question of which spacetimes to include in the

gravitational PI is still open; in the remainder of these notes, we will take the view that the

gravitational PI does sum over all topologies. The consequences will be dramatic.

Pants. One justification for this choice comes from the fact that Hamilton-Jacobi theory

(in the semiclassical approximation) can be used to show that Euclidean solutions in gravity

are related to tunneling processes in the Lorentzian theory. This seems to indicate that there

are topology-changing processes even in the Lorentzian theory. A cute illustration of this

idea is based on the (Euclidean) pair of pants spacetime, shown in Fig. 6.

Figure 6: Pants.

We imagine the time arrow as running upwards and consider spatial slices of the surface.
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There are initially two disjoint universes; as they coalesce into a larger univese, the spatial ge-

ometry is momentarily singular at the crossover point. Even though the Euclidean spacetime

is perfectly smooth, it does not admit a smooth Lorentzian metric. Rather than discarding

such metrics, however, we will grapple directly with singularities in the gravitational PI. We

sometimes think of the lower half of the pair of pants as living in the configuration space of

2-universe states, and the upper half as living in the configuration space of 1-universe states.

They are joined at their boundary by a singular configuration, which nevertheless should have

finite action. This suggests that it can be tunneled through, and that state spaces of metrics

with different topologies should be somehow stitched together at degenerate configurations.

In retrospect, this should not be too surprising. The PI measure is generically supported

on singular configurations, paths (or geometries) which are not smooth, nor even C1.

2 Gravity in a Box

2.1 The Gravitational Action

Motivation. After developing the canonical path integral in quantum mechanics in both

Lorentzian and Euclidean signature, we discussed its generalization to the case of gravity. For

the most part, our PI calculations will be semiclassical, which means that we will evaluate

the gravitational action on solutions to Einstein’s equations. It therefore behooves us to

understand the classical action of GR in more detail. In this section, we will do so in

Lorentzian signature; in the next section, we will pass to Euclidean signature.

The variational principle. In most GR courses, one is taught that the Einstein field

equations of general relativity follow from the Einstein–Hilbert action (1.31). This is indeed

the case, but the derivation involves throwing away certain boundary terms:

SEH[g] =
1

16πG

∫
M

ddx
√
−g R =⇒ δSEH =

∫
M

ddx
√
−g (eom)abδg

ab +
(

boundary
terms

)
. (2.1)

These terms do not affect local physics in the interior of M , so often the Einstein–Hilbert

action is good enough. But we are interested in the actual numerical value of the action, so

we must tread carefully to make sure we are using the correct action to begin with.

We say that an action has a good variational principle or yields a well-posed variational

problem when its variation gives only the equations of motion, with no extra boundary

terms. Such boundary terms may be interpreted as “unwanted” equations of motion on the

boundary; moreover, the discussion of semiclassical PIs above applies only to actions with

a good variational principle. The Einstein–Hilbert action does not satisfy this requirement,

so we must add to it an additional boundary term that cancels the one above.
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2.1 The Gravitational Action 2 GRAVITY IN A BOX

Gravity in a box. For pedagogical simplicity, we will take the spacetime (M, g) to be

the “box” shown in Fig. 7 (left). We assume that M is bounded to the future and past by

initial and final surfaces, and to the “sides” by a timelike (i.e. spatial) boundary manifold

∂M . Depending on which boundary conditions we choose to impose and which variational

problem we wish to solve, the aforementioned boundary term in the action will live on

either the spatial or past/future boundaries. For the standard Cauchy problem in GR, the

boundary term lives only on the spatial boundary: this is a definition, rather than a claim

to be proven. Below are two pieces of intuition that explain why we consider such problems.

First of all, we will soon see that this boundary prescription is equivalent to the claim that

the Hamiltonian in the canonical formulation of GR is a boundary term; hence it generates

time translations on ∂M . In other words, the Hamiltonian defines the gravitational energy of

M by generating a canonical transformation that moves the future and past boundaries while

preserving the spatial boundary. All of this befits a variational problem where the action is

specified on the fixed spatial boundary, but not on the “movable” temporal boundaries. Yet

another equivalent way to say this is that modifying the action at the spatial boundaries

modifies the Hamiltonian and therefore changes the system under consideration.

Figure 7: Left: gravity in a box. Right: the extrinsic curvature.

States. Second of all, recall the discussion of section 1.2, where it was shown that the

boundary terms appearing in the action are not universal, but are rather motivated by the

particular quantum states whose overlap we want to compute using a PI,

〈ψ′|ψ〉 =

∫
DqDp exp

[
i
(
SL − lnψ′(tf )

∗ − lnψ(ti)
)]
, (2.2)

where—crucially—|ψ〉 and |ψ′〉 are specified on the past and future boundaries of M . So

changing the action on the past and future boundaries is tantamount to modifying the state

of the system, while changing the action on the spatial boundary is equivalent to modifying

the system itself. We aim to fix the physical system and examine the evolution of its states,

so we should fix the action on the spatial boundaries.
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2.2 Boundary Terms and Conditions 2 GRAVITY IN A BOX

As a side comment, (2.2) shows that the true variational principle that defines the in-

stantiation of the classical theory we care about is not δSL = 0, but rather

δ(SL − lnψ′(tf )
∗ − lnψ(ti)) = 0 ⇐⇒ δSL = ln [ψ′(tf )

∗ψ(ti)]. (2.3)

In other words, an “action flux” at the past and future boundaries is allowed, so long as we

understand it to represent a modification of the initial and final states of the system.

A look ahead. In what follows, we will make the discussion above more precise. We will

begin by varying the Einstein–Hilbert action explicitly to better understand (2.1). Next, we

discuss the choice of boundary conditions on ∂M that defines the variational problem we

aim to solve. We will then define and meditate on the extrinsic curvature as the key tool

for constructing the requisite boundary term. And finally, after a few more comments, we

arrive at the celebrated Gibbons–Hawking–York boundary term in the gravitational action.

For the impatient reader who wishes to skip §2.2, the end result is

S = SEH + SGHY =
1

16πG

∫
M

ddx
√
−g R +

1

8πG

∫
∂M

dd−1x
√
−hK, (2.4)

where h is the induced metric on ∂M and K is the extrinsic curvature of ∂M ⊂M .

2.2 Boundary Terms and Conditions

Variation of the action. A calculation, found (e.g.) in Appendix E of Wald, shows that

δSEH =
1

16πG

∫
M

ddx
√
−g
(
Rab −

1

2
Rgab

)
δgab +

1

16πG

∫
∂M

dd−1x
√
−hna∂Mva, (2.5)

where h is the (Lorentzian) boundary metric on ∂M induced from the bulk metric g, n∂M is

the unit normal to ∂M , and v is the variation given by

va =
(
−gabgcd + gbdgac

)
∇b(δgcd). (2.6)

At first sight, v looks like a complete mess. But on closer inspection, dimensional analysis

almost completely fixes its form. The Ricci scalar contains two derivatives of the metric, so

the variation and an integration by parts removes one: R ∼ ∂∂g =⇒ δR ∼ ∇(δg) +����δ(∇g).

The resulting object has three indices and must be contracted with the one-index unit normal,

so it needs to be an object that carries four indices and has no metric derivatives. The only

two options for such a term are exactly what appear in parentheses above. The only thing

not fixed by this argument is the numerical prefactors at each term.

Dirichlet and Neumann. From the index contractions present in (2.5–2.6), we see that

the first term of na∂Mva involves only derivatives of the metric in the normal direction to ∂M ,
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while the second term involves derivatives in both the normal and tangential directions.

In order to specify the variational problem to be solved by the full gravitational action,

we need to choose the boundary conditions obeyed by the metric on ∂M . Two common

choices are Dirichlet conditions, where h is held fixed, and Neumann conditions, where the

normal derivatives of h are held fixed. We will take the Dirichlet case: we set δh = 0, and

as a consequence all derivatives of δg tangent to ∂M must vanish. Therefore the boundary

term we seek must have a variation which, subject to δh = 0, produces exactly the right

normal-derivative contributions to cancel (2.6).

Explicitly, the full gravitational action must take the form

SL = SEH + S∂ =
1

16πG

∫
M

ddx
√
−g R +

1

16πG

∫
∂M

dd−1x
√
−hL∂, (2.7)

where L∂ is a scalar on ∂M constructed only from the boundary metric h using at most one

normal derivative. What can such a term look like?

Extrinsic curvature. While many objects familiar from GR, like the Riemann tensor,

measure the curvature of a manifold intrinsically and without reference to an embedding

in some larger ambient space, the extrinsic curvature tensor measures the curvature of a

submanifold as embedded within a larger space. The extrinsic curvature is a näıve notion:

a cylinder in 3D space, for example, has vanishing Riemann tensor, but is “obviously” not

flat relative to the ambient R3, and indeed has positive extrinsic curvature.

The extrinsic curvature K of a codimension-1 submanifold (N, h) embedded in (M, g) is

the trace of half the (outward-pointing) normal Lie derivative of the induced metric:

Kij =
1

2
Lnhij, K = Kijh

ij (2.8)

Let’s unpack this definition in the case N = ∂M : see Fig. 7 (right) above. The unit

normal na to ∂M is a vector field defined only on ∂M , but we can extend it to a vector

field ña in the bulk of M in an arbitrary (but smooth) way. Although it is not yet obvious,

the following is actually independent of ña. Viewing ña as the infinitesimal generator of a

diffeomorphism, we imagine moving ∂M along the flow lines of ña: each point on ∂M moves

by the same proper distance in the ñormal direction. We can also use ña to transport the

boundary metric h to the new location of ∂M . (This is called “pulling back the metric.”)

The pulled-back metric h′ on the flowed boundary ∂M ′ can then be compared to the restric-

tion of the bulk metric g on the surface ∂M ′. The difference between the two, evaluated

infinitesimally close to ∂M , is the Lie derivative Lnhij. In this way, na provides a measure

of how “wrinkled” ∂M is, and these wrinkes are what the extrinsic curvature picks up.

Example: the sphere. Let Sn(r) ⊂ Rn+1 be the n-sphere of radius r. The unit normal

vector points radially outwards, na = (∂r)
a, and the metric induced on Sn is the usual round
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metric ds2 = hijdx
idxj = r2dΩ2

n. Under an infinitesimal variation in the radial direction,

i.e. extending na to ña = (∂r)
a away from Sn(r), we find

ds2 = r2dΩ2
n =⇒ δ

(
ds2
)

= 2r dΩ2
n δr =⇒ δhij = 2r δr. (2.9)

The normal Lie derivative and the extrinsic curvature are therefore

Lnhij =
δhij
δr

= 2r dΩ2
n =

2

r
hij =⇒ Kij =

1

r
hij =⇒ K =

1

r
hijh

ij =
n

r
. (2.10)

Some useful tools. Here we collect some formulæ that we will not discuss in detail, but

which prove useful and whose derivations can be found in textbooks like Wald’s.

First, we define an object hab, with bulk indices in M and closely related to the boundary

metric hij, by hab = gab − nanb. Formally, hab is the pullback of the boundary metric from

∂M to M along the natural projection p : M −→ ∂M . Raising an index gives the matrix

hba of (the differential of) this projection. The main property of hab is that it annihilates

the normal direction: nahab = nb − (nana)nb = 0. Conversely, if va and wb are tangent to

∂M , then contraction with hab leaves them unchanged: vahabw
b = vawa = vihijw

j. In other

words, hab is something like a projection onto the directions tangent to ∂M .

It turns out that hab appears in a very practical formula for computing the (pullback

of the) extrinsic curvature: Kab = hca∇cnb. This formula avoids the explicit use of Lie

derivatives, and it makes manifest the claim that Kab depends only on the normal vector

to ∂M , and not on its extension into M . As with hab above, Kab has bulk indices and is

related to Kij in the same tangential-projection manner as hab is to hij. It therefore satisfies

K = Kabg
ab = Kabh

ab = Kijh
ij. Finally, we note that the extrinsic curvature tensor Kij, the

Riemann tensor RM
abcd, and the boundary Riemann tensor R∂M

ijk` are not independent! They

are related by the celebrated Gauss-Codazzi equations—but we will not need them here.

The Gibbons–Hawking–York term. The extrinsic curvature turns out to be essentially

the boundary term we need. We define the Gibbons–Hawking-York term to be

SGHY[h] =
1

8πG

∫
∂M

dd−1x
√
−hK, Stot[g, h] = SEH[g] + SGHY[h]. (2.11)

It can then be shown, by a somewhat tedious calculation, that

δStot = δ(SEH + SGHY) =

∫
M

ddx
√
−g (eom)abδg

ab − 1

16πG

∫
∂M

dd−1x
√
−hΠijδhij, (2.12)

where Πij ≡ Kij−Khij. If we take Stot = SEH+SGHY to be the gravitational action, then the

calculation above shows that its variation produces, aside from the equations of motion, a

boundary term that vanishes upon imposing the Dirichlet boundary condition δhij = 0. The

quantity Πij is sometimes called the gravitational momentum, and on spacelike surfaces, it
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is the variable canonically conjugate to the metric (in the sense of Hamilton-Jacobi theory).

As we shall see, it is also closely related to the Brown–York boundary stress tensor. So now

we are done: by taking Stot = SEH + SGHY and specifying δh = 0 on ∂M , we have set up a

good variational principle for gravity in a box.

2.3 The Brown–York Stress Tensor

Background structures. In physics, we make a distinction between dynamical objects,

like pendulum bobs or scalar fields, and background structures, like the fixed background

metric of Newtonian mechanics, or a choice of boundary conditions. This distinction gives

rise to a broad philosophy: if you vary the dynamical fields while keeping the background data

fixed, you get the equations of motion; and if you vary the background data while ensuring

that the equations of motion are satisfied, you get conservation laws and symmetries.

The two parts of this mantra can be expressed in the following set of hieroglyphics:

δS =

∫
M

(eom)a δφa︸︷︷︸
bulk variation

+

∫
∂M

(
boundary

terms

)
i
δφi∂︸︷︷︸

bdy variation

= 0 =⇒

{
(eom)a = 0, bdy fixed

(bdy)i = 0, on shell
(2.13)

Setting δφi∂ = 0 fixes the boundary data, kills the second term, and yields the dynamics.

Setting δφa = 0 sets the fields to their EOM, kills the first term, and yields the symmetries.

We’ll see this in action shortly. But first, recall that in ordinary field theories with a fixed

(but possibly curved) background metric, we define the stress tensor by varying the action

with respect to that background structure: Tab = − 2√
−g

δS
δgab

. This is a much more concrete

way to see that varying a boundary condition can tell us about the theory’s symmetries.

The Brown–York stress tensor. Brown and York were motivated to do something sim-

ilar for gravity in a box, where the boundary metric h on ∂M is a background structure and

a boundary condition. They defined the Brown–York boundary stress tensor by

TBY
ij = − 2√

−h
δStot

δhij
(lives on ∂M). (2.14)

At first, it’s not clear what δStot/δh
ij should mean: S is defined on all of M , but h is defined

only on ∂M . It looks like one needs to choose an extension of h into M , and to show that

TBY
ij is independent of the choice of extension. But in practice, the extension is not necessary

due to (2.12), which shows that the on-shell variation of Stot depends only on hij:

δStot = − 1

16πG

∫
∂M

dd−1x
√
−hΠij δhij (2.15)

BY and GHY. Let us compare this variation with Brown and York’s definition, which can

be rearranged to read δStot = −1
2

√
−hTBY

ij δhij. Upon using the identity δhij = −hikh`jδhk`
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to lower indices [intuition for the proof: d
dx

1
x

= − 1
x2

], we arrive at the celebrated result:

TBY
ij = − 1

8πG
Πij. (2.16)

The physical picture is that for pure gravity in a box, the only stress-energy in the theory

arises from the shape of the box ∂M , is defined only on ∂M , and moreover the “energy”

stored in ∂M depends only on the extrinsic curvature of the embedding of ∂M within M .

Importantly, however, TBY
ij contains normal derivatives of gab at ∂M , and is not determined

by the boundary data hij; instead it depends on the particular solution.

Covariant conservation. An important property of TBY
ij is that it is divergence-free, i.e.

covariantly conserved. Since it is defined on ∂M , where the metric is fixed, the usual proof

goes through. Nevertheless, we will recapitulate it to illustrate the main idea. Let ξ be any

vector field on M that is tangent to ∂M at the boundary (i.e. its flow fixes ∂M). Under the

local diffeomorphism it generates, the metric transforms as gab −→ gab + ∇aξb + ∇bξa. In

particular, we also have hij −→ hij + Diξ
∂
j + Djξ

∂
i , where D is the covariant derivative on

∂M , and where ξ∂ is the restriction of ξ to ∂M . Now consider an on-shell variation of the

metric gab along ξ. Substituting δh = Diξ
∂
j +Djξ

∂
i in (2.15), we find

δStot = − 1

16πG

∫
∂M

dd−1x
√
−hΠij

(
Diξ

∂
j +Djξ

∂
i

)
=

1

8πG

∫
∂M

dd−1x
(
DiΠ

ij
)
ξ∂j = 0, (2.17)

where we have used the symmetry of Πij and integrated by parts. The integral above vanishes

for all suitable ξ, so we conclude that DiΠ
ij = 0. Thus diffeomorphism invariance guarantees

that the BY stress tensor is covariantly conserved, as it should be.

Conserved charges. If, in addition to being tangent to the boundary, ξ∂ is also a Killing

symmetry of ∂M , then the BY stress tensor gives rise to a conserved Noether charge Q[ξ]

that corresponds to the symmetry of evolution along the ξ∂ direction. It is defined by

Q[ξ] =

∫
Σ

dd−2x
√
−hΣ n

aξb∂T
BY
ab , (2.18)

where Σ is a Cauchy surface in ∂M , hΣ is the induced metric on Σ, and n is the future-

directed unit normal to Σ. The charge Q[ξ] is conserved in the sense that it does not depend

on the choice of Σ—that is, it is a global characterization of ∂M . For example, when ξ∂
points in the time direction, Q[ξ] is the ADM energy of the spacetime.

(As an aside, the formula above gives the standard notion of energy; however, for all

other charges (momentum, etc.), an extra minus sign is typically introduced by convention.)
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4 ENTROPY AND THE REPLICA TRICK

3 Euclidean Quantum Gravity

3.1 Euclidean Path Integrals (Reprise)

3.2 Gravitational Energy and Entropy

3.3 The Hawking–Page Transition

4 Entropy and the Replica Trick

4.1 The Replica Trick

4.2 The RT Formula and LM

4.3 Quantum Corrections

4.4 In Lorentz Signature
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